AI-based Bowtie with RAG Engine Analysis
In this case we use [Khazaeeni2006] in our AI-based Bowtie with RAG engine. Following notes used from [Khazaeeni2006] using RAG.
Output of RAG
To validate the framework, we utilized comprehensive risk documentation from multiple BOT infrastructure projects in Iran. The input text contained detailed analysis of political, economic, and operational risks associated with these complex projects.
BOT Projects Under Analysis
Table: BOT Projects Underway in Iran
| Project Name | Stage of Work | Concession Holder Company |
|---|---|---|
| Isfahan South Power Plant | In Operation | Isfahan South Power Plant Co. (MAPNA) |
| Zanjan Power Plant | Contract Signed | MAPNA International & Quest (UAE) |
| Pars-e-Sar Power Plant | Under Negotiation | Consortium led by Edison |
| Aliabad Power Plant | Under Negotiation | OGER (Saudi Arabia) |
| Tabriz Power Plant | Under Negotiation | ZENEL (Saudi Arabia) |
| Shirvan Power Plant | Under Negotiation | Sumitomo (Japan) |
| Zanjan Power Plants (4-2) | Feasibility Study - BOO* | - |
| Isfahan Power Plants (4) | Feasibility Study - BOO* | - |
*BOO: Build-Own-Operate
Risk Documentation Analysis
The risk documentation analyzed contained comprehensive information about various risk categories including political risks (regulatory changes), economic risks (inflation), construction delays, and market uncertainties. The text detailed specific risk mitigation strategies such as risk allocation frameworks, Take-or-pay agreements, and MIGA insurance.
AI-Generated Bowtie Components
- Hazard: Project Failure / Financial Loss
- Top Event: Disruption of Operational Continuity
- Threats: Political Instability, Economic Inflation, Construction Delays, Regulatory Changes, Market Volatility
- Preventive Barriers: Risk Allocation Framework, Take-or-pay Agreements, MIGA Insurance, Comprehensive Risk Assessment, Government Support Mechanisms
- Consequences: Stakeholder Bankruptcy, Reputation Damage, Service Disruption, Financial Loss
- Mitigative Barriers: Crisis Management Programs, Contract Modification Mechanisms, Insurance Coverage, Diversification Strategies
Visualization Analysis
The system successfully mapped these entities into a Mermaid flowchart, correctly placing “Take-or-pay agreements” as a preventive barrier against “Economic risks” and “MIGA insurance” as a transference mechanism for political risks. The diagram demonstrated proper causal relationships and logical structure consistent with Bowtie construction best practices.
flowchart LR
subgraph Hazard
H["<b>Project Failure</b><br>Severe Financial Losses<br>and Operational Disruptions"]
end
subgraph Threats
T1["<b>Political Risks</b><br>Regulatory Changes, Political Instability"]
T2["<b>Economic Risks</b><br>Inflation, Currency Fluctuations, Market Recession"]
T3["<b>Legal Risks</b><br>Regulation Changes"]
T4["<b>Development Risks</b><br>Financing Delays"]
T5["<b>Execution Risks</b><br>Construction Delays, Technical Issues"]
T6["<b>Market Risks</b><br>Demand Changes"]
T7["<b>Operational Risks</b><br>Operational Problems"]
end
subgraph Preventive_Barriers
B1["<b>Risk Allocation Models</b><br>Among Stakeholders"]
B2["<b>Contractual Agreements</b><br>Take-or-pay"]
B3["<b>Insurance Mechanisms</b><br>MIGA"]
B4["<b>Comprehensive Risk Assessment</b><br>and Planning"]
B5["<b>Governance Structures</b><br>and Shareholder Agreements"]
B6["<b>Avoidance & Mitigation Strategies</b>"]
end
subgraph Top_Event
TE[("<b>Top Event</b><br>BOT Project Failure")]
end
subgraph Mitigative_Barriers
M1["<b>Risk Control Programs</b><br>and Crisis Management"]
M2["<b>Insurance Coverage</b><br>and Financial Support"]
M3["<b>Contract Amendment Mechanisms</b><br>e.g., Tariff Adjustment"]
M4["<b>Risk Sharing Agreements</b>"]
M5["<b>Risk Acceptance Programs</b>"]
end
subgraph Consequences
C1["<b>Severe Financial Losses</b>"]
C2["<b>Project Delay or Cancellation</b>"]
C3["<b>Damage to Stakeholder Reputation</b>"]
C4["<b>Infrastructure Service Disruption</b>"]
C5["<b>Legal Disputes</b>"]
C6["<b>Social and Economic Impacts</b>"]
end
subgraph Digital_Twin_AI
DT["<b>Digital Twin & AI Intelligence Layer</b>"]
DT1["<b>Physics-based Digital Twin</b>"]
DT2["<b>Real-time Sensor Integration</b>"]
DT3["<b>Degradation Prediction Models</b>"]
DT4["<b>What-if Scenario Engine</b>"]
AI1["<b>Adaptive Risk Allocation</b>"]
AI2["<b>Smart Insurance Activation</b>"]
AI3["<b>Risk Mitigation Recommendations</b>"]
end
subgraph Multi_Layer
L1["<b>Physical/Technical</b><br>Infrastructure, Equipment"]
L2["<b>Control & Instrumentation</b><br>Control Systems, Safety"]
L3["<b>Human & Organizational</b><br>Management Teams, Processes"]
L4["<b>Digital/Cyber</b><br>Digital Systems, Data"]
L5["<b>Management & Governance</b><br>Governance Structures, Regulations"]
end
H -- Threat Path --> TE
T1 == Threat Flow ==> B1
T2 == Threat Flow ==> B2
T3 == Threat Flow ==> B3
T4 == Threat Flow ==> B4
T5 == Threat Flow ==> B5
T6 == Threat Flow ==> B6
T7 == Threat Flow ==> B1
B1 -- Preventive Barrier --> TE
B2 -- Preventive Barrier --> TE
B3 -- Preventive Barrier --> TE
B4 -- Preventive Barrier --> TE
B5 -- Preventive Barrier --> TE
B6 -- Preventive Barrier --> TE
TE -- Mitigation Path --> M1
TE -- Mitigation Path --> M2
TE -- Mitigation Path --> M3
TE -- Mitigation Path --> M4
TE -- Mitigation Path --> M5
M1 -. Consequence Flow .-> C1
M2 -. Consequence Flow .-> C2
M3 -. Consequence Flow .-> C3
M4 -. Consequence Flow .-> C4
M5 -. Consequence Flow .-> C5
M1 -. Consequence Flow .-> C6
M2 -. Consequence Flow .-> C6
M3 -. Consequence Flow .-> C6
M4 -. Consequence Flow .-> C6
M5 -. Consequence Flow .-> C6
DT -.- AI_Support -.-> B1
DT -.- AI_Support -.-> B2
DT -.- AI_Support -.-> B3
DT -.- AI_Support -.-> B4
DT -.- AI_Support -.-> B5
DT -.- AI_Support -.-> B6
DT -.- AI_Support -.-> M1
DT -.- AI_Support -.-> M2
DT -.- AI_Support -.-> M3
DT -.- AI_Support -.-> M4
DT -.- AI_Support -.-> M5
L1 -- Layer Influence --> B1
L2 -- Layer Influence --> B2
L3 -- Layer Influence --> B3
L4 -- Layer Influence --> B4
L5 -- Layer Influence --> B5
L1 -- Layer Influence --> M1
L2 -- Layer Influence --> M2
L3 -- Layer Influence --> M3
L4 -- Layer Influence --> M4
L5 -- Layer Influence --> M5
style H fill:#ffff99,stroke:#333,stroke-width:2px
style T1 fill:#99ccff,stroke:#333
style T2 fill:#99ccff,stroke:#333
style T3 fill:#99ccff,stroke:#333
style T4 fill:#99ccff,stroke:#333
style T5 fill:#99ccff,stroke:#333
style T6 fill:#99ccff,stroke:#333
style T7 fill:#99ccff,stroke:#333
style B1 fill:#90ee90,stroke:#333
style B2 fill:#90ee90,stroke:#333
style B3 fill:#90ee90,stroke:#333
style B4 fill:#90ee90,stroke:#333
style B5 fill:#90ee90,stroke:#333
style B6 fill:#90ee90,stroke:#333
style TE fill:#ff4d4d,stroke:#333,stroke-width:2px,color:#fff
style M1 fill:#ffa64d,stroke:#333
style M2 fill:#ffa64d,stroke:#333
style M3 fill:#ffa64d,stroke:#333
style M4 fill:#ffa64d,stroke:#333
style M5 fill:#ffa64d,stroke:#333
style C1 fill:#ff9999,stroke:#333
style C2 fill:#ff9999,stroke:#333
style C3 fill:#ff9999,stroke:#333
style C4 fill:#ff9999,stroke:#333
style C5 fill:#ff9999,stroke:#333
style C6 fill:#ff9999,stroke:#333
style DT fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style DT1 fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style DT2 fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style DT3 fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style DT4 fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style AI1 fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style AI2 fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style AI3 fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
style L1 fill:#e6e6fa,stroke:#333
style L2 fill:#e6e6fa,stroke:#333
style L3 fill:#e6e6fa,stroke:#333
style L4 fill:#e6e6fa,stroke:#333
style L5 fill:#e6e6fa,stroke:#333
linkStyle 0 stroke:#ff4d4d,stroke-width:3px
linkStyle 1 stroke:#4169E1,stroke-width:2px,stroke-dasharray: 5 5
linkStyle 2 stroke:#4169E1,stroke-width:2px,stroke-dasharray: 5 5
linkStyle 3 stroke:#4169E1,stroke-width:2px,stroke-dasharray: 5 5
linkStyle 4 stroke:#4169E1,stroke-width:2px,stroke-dasharray: 5 5
linkStyle 5 stroke:#4169E1,stroke-width:2px,stroke-dasharray: 5 5
linkStyle 6 stroke:#4169E1,stroke-width:2px,stroke-dasharray: 5 5
linkStyle 7 stroke:#4169E1,stroke-width:2px,stroke-dasharray: 5 5
linkStyle 8 stroke:#228B22,stroke-width:2px
linkStyle 9 stroke:#228B22,stroke-width:2px
linkStyle 10 stroke:#228B22,stroke-width:2px
linkStyle 11 stroke:#228B22,stroke-width:2px
linkStyle 12 stroke:#228B22,stroke-width:2px
linkStyle 13 stroke:#228B22,stroke-width:2px
linkStyle 14 stroke:#FF8C00,stroke-width:2px
linkStyle 15 stroke:#FF8C00,stroke-width:2px
linkStyle 16 stroke:#FF8C00,stroke-width:2px
linkStyle 17 stroke:#FF8C00,stroke-width:2px
linkStyle 18 stroke:#FF8C00,stroke-width:2px
linkStyle 19 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 20 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 21 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 22 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 23 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 24 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 25 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 26 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 27 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 28 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 29 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 30 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 31 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 32 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 33 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 34 stroke:#20B2AA,stroke-width:2px
linkStyle 35 stroke:#20B2AA,stroke-width:2px
linkStyle 36 stroke:#20B2AA,stroke-width:2px
linkStyle 37 stroke:#20B2AA,stroke-width:2px
linkStyle 38 stroke:#20B2AA,stroke-width:2px
linkStyle 39 stroke:#20B2AA,stroke-width:2px
linkStyle 40 stroke:#20B2AA,stroke-width:2px
linkStyle 41 stroke:#20B2AA,stroke-width:2px
linkStyle 42 stroke:#20B2AA,stroke-width:2px
linkStyle 43 stroke:#20B2AA,stroke-width:2px
Interestingly, for display it briefly, we use my AI-Based Bow-tie and this is the result:
flowchart LR
subgraph Hazard
H["<b>Project Failure</b><br>Financial Loss & Operational Disruption"]
end
subgraph Threats
T1["<b>Political</b><br>Regulatory Changes"]
T2["<b>Economic</b><br>Inflation, Market Risks"]
T3["<b>Execution</b><br>Construction Delays"]
T4["<b>Operational</b><br>Technical Issues"]
end
subgraph Preventive_Barriers
B1["<b>Risk Allocation</b><br>Stakeholder Models"]
B2["<b>Contractual</b><br>Take-or-pay Agreements"]
B3["<b>Insurance</b><br>MIGA Coverage"]
B4["<b>Risk Assessment</b><br>Planning & Governance"]
end
subgraph Top_Event
TE[("<b>Top Event</b><br>BOT Project Failure")]
end
subgraph Mitigative_Barriers
M1["<b>Crisis Management</b>"]
M2["<b>Insurance Support</b>"]
M3["<b>Contract Amendments</b><br>Tariff Adjustments"]
end
subgraph Consequences
C1["<b>Financial Losses</b>"]
C2["<b>Reputation Damage</b>"]
C3["<b>Service Disruption</b>"]
end
subgraph AI_Support
AI["<b>AI Intelligence Layer</b><br>Risk Mitigation & Prediction"]
end
H -- Threat Path --> TE
T1 --> B1
T2 --> B2
T3 --> B3
T4 --> B4
B1 --> TE
B2 --> TE
B3 --> TE
B4 --> TE
TE --> M1
TE --> M2
TE --> M3
M1 --> C1
M1 --> C2
M2 --> C3
M3 --> C1
AI -. Support .-> B1
AI -. Support .-> B2
AI -. Support .-> M1
AI -. Support .-> M2
style H fill:#ffff99,stroke:#333,stroke-width:2px
style T1 fill:#99ccff,stroke:#333
style T2 fill:#99ccff,stroke:#333
style T3 fill:#99ccff,stroke:#333
style T4 fill:#99ccff,stroke:#333
style B1 fill:#90ee90,stroke:#333
style B2 fill:#90ee90,stroke:#333
style B3 fill:#90ee90,stroke:#333
style B4 fill:#90ee90,stroke:#333
style TE fill:#ff4d4d,stroke:#333,stroke-width:2px,color:#fff
style M1 fill:#ffa64d,stroke:#333
style M2 fill:#ffa64d,stroke:#333
style M3 fill:#ffa64d,stroke:#333
style C1 fill:#ff9999,stroke:#333
style C2 fill:#ff9999,stroke:#333
style C3 fill:#ff9999,stroke:#333
style AI fill:#dda0dd,stroke:#333,stroke-dasharray: 5 5
linkStyle 0 stroke:#ff4d4d,stroke-width:3px
linkStyle 1 stroke:#4169E1,stroke-width:2px
linkStyle 2 stroke:#4169E1,stroke-width:2px
linkStyle 3 stroke:#4169E1,stroke-width:2px
linkStyle 4 stroke:#228B22,stroke-width:2px
linkStyle 5 stroke:#228B22,stroke-width:2px
linkStyle 6 stroke:#228B22,stroke-width:2px
linkStyle 7 stroke:#228B22,stroke-width:2px
linkStyle 8 stroke:#FF8C00,stroke-width:2px
linkStyle 9 stroke:#FF8C00,stroke-width:2px
linkStyle 10 stroke:#FF8C00,stroke-width:2px
linkStyle 11 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 12 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 13 stroke:#FF4500,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 14 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 15 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
linkStyle 16 stroke:#9370DB,stroke-width:2px,stroke-dasharray: 3 3
References
Khazaeeni, G., & Ahmadi, L. (2006). Risk management in mega-projects with the BOT approach. Proceedings of the 2nd International Project Management Conference.
The Impact of AI Intelligent Layer on Risk Management Framework
The integration of an AI intelligent layer represents a paradigm shift in traditional risk management approaches for BOT projects. This intelligent layer serves as a dynamic decision support system that enhances the entire risk management lifecycle by providing real-time insights, predictive analytics, and adaptive response mechanisms. The AI component analyzes vast amounts of unstructured textual data, identifies complex risk patterns, and recommends optimal mitigation strategies that would be difficult for human analysts to discern manually. The AI intelligent layer operates through several key mechanisms: it employs natural language processing to extract nuanced risk indicators from project documentation, utilizes machine learning algorithms to predict risk evolution based on historical data patterns, and implements reinforcement learning to optimize risk allocation strategies across stakeholders. This technology enables the system to continuously learn from new risk scenarios, improving its accuracy and effectiveness over time. The impact of this AI layer extends beyond mere automation; it fundamentally transforms how organizations approach risk management in BOT projects. By providing predictive risk assessment capabilities, the system can identify emerging threats before they materialize, allowing for proactive rather than reactive risk mitigation. The intelligent layer also facilitates more sophisticated risk quantification, moving beyond qualitative assessments to provide probabilistic risk modeling that supports better decision-making under uncertainty. Furthermore, the AI component enhances stakeholder collaboration by generating standardized, easily interpretable risk visualizations that communicate complex risk scenarios to diverse audiences. This democratization of risk information enables more informed participation from all project stakeholders, from technical teams to executive leadership and government regulators. However, the implementation of such an intelligent layer presents both opportunities and challenges. While it significantly reduces the time required for risk analysis and improves consistency, it also raises questions about model transparency, data privacy, and the potential for algorithmic bias. The effectiveness of the AI system ultimately depends on the quality and comprehensiveness of the training data, as well as the ongoing validation and refinement by domain experts. Looking forward, the integration of AI with traditional risk management frameworks like Bowtie analysis represents the next frontier in process safety management. As the technology continues to evolve, we can expect even more sophisticated capabilities, including real-time risk monitoring, automated scenario generation, and dynamic risk response optimization. This evolution promises to make advanced risk management tools more accessible and effective for organizations of all sizes, ultimately contributing to safer and more successful BOT project implementations.